Anatomical relationships between the V_2 segment of the vertebral artery and the cervical nerve roots

SERGIO PAOLINI, M.D., and GIUSEPPE LANZINO, M.D.

Università degli Studi di Perugia, IRCCS Neuromed, Pozzilli, Italy; and Department of Neurosurgery, Illinois Neurological Institute, University of Illinois College of Medicine at Peoria, Illinois

Object. During surgical procedures focused on the cervical nerve roots, the surgeon works in proximity to the V_2 segment of the vertebral artery (VA). Depending on the specific surgical approach, it may be necessary to identify, expose, or mobilize the artery. In most cases, the artery may be left undisturbed. To reduce the risk of iatrogenic injury to the V_2 segment during anterior and anterolateral approaches to the cervical spine, the authors analyzed the relationship between the V_2 segment and the proximal segment of the C3–6 nerve roots.

Methods. Six cadaveric cervical spines (12 sides) were fixed with formalin, injected with red and blue latex, and investigated intraoperatively using different magnifications ($\times 3$–40). The VA rested on the anteromedial surface of the cervical nerve roots at the level of each intertransverse space. The exiting nerve roots intersected the VA at a distance ranging from 4.5 to 8.1 mm (mean 6.3 ± 1.06 mm) from the dural sac. The distance was slightly shorter at cephalad levels, suggesting that the artery is more posteriorly and medially situated at those levels. Arterial pedicles anchored the VA to the cervical nerve roots at various levels. These arteries gave rise to purely radicular, ligamentous, and medullary branches without a predictable pattern. After reaching the nerve roots on their lower margin, the nonligamentous branches pierced the radicular dural sheath within the neural foramen at a distance of 2 to 4 mm from the VA.

Conclusions. Proximal-to-distal dissection of a cervical nerve root may proceed with relative safety for at least 4 mm. The V_2 segment of the VA gives rise to at least one radicular arterial pedicle between C-4 and C-6. These trunks give rise to purely radicular, ligamentous, and medullary branches in an unpredictable pattern.

Key Words • cervical spine • spinal nerve root • vertebral artery • spinal surgery

The VA is traditionally divided into four portions. The V_2 segment extends from the VA entry into the C-6 foramen to the transverse foramen of C-2. It is the longest segment of the VA and is, for the most part, embedded within its own osseous canal, in close relationship with the exiting cervical nerve roots. The V_2 segment itself is rarely the target of a surgical approach. However, in a number of commonly performed procedures such as cervical corpectomy, cervical foraminotomy, and anterior discectomy, the surgeon works very close to the V_2 segment. Although rare, direct injury of this portion of the VA during cervical surgery is a well-known complication. Several investigators have detailed the basic anatomy of the VA. However, little attention has been given to the mutual relationships between the VA and the exiting cervical roots. In this study, we investigated the specific features of the neurovascular complex formed by the second segment of the VA and the related cervical nerve roots.

Abbreviations used in this paper: VA = vertebral artery; VB = vertebral body.

Materials and Methods

Six cadaveric cervical columns (12 sides) were fixed with formalin, kept in a 60% alcohol solution, and then injected with red and blue latex. The V_2 segment of the VA was investigated under different magnifications ($\times 3$–40). The artery was exposed in a stepwise fashion, within its own canal, from an anterolateral direction. The dural sac and the cervical nerve roots were uncovered by a progressive, radical drilling of the VBs and of the transverse processes, while the VA was left in situ. The distance between the nerve root axilla and the point where the VA intersects the root itself was recorded, and the relationships between the nerve roots and the collateral branches of the V_2 segment were described.

Results

The VA was found to have a close relationship with the cervical nerve roots. At the level of each intertransverse space, the posterior surface of the artery rested on the anteromedial aspect of the nerve roots (Fig. 1A). The nerve roots exiting at C3–6 intersected the V_2 segment at a distance ranging from 4.5 to 8.1 mm (mean 6.3 ± 1.06 mm) from the dural sac, as measured on the side of the nerve axilla (Fig. 1B). The distance was slightly shorter at cephal-
alad levels (Table 1). The exiting roots at each level were surrounded by extensive venous plexuses (Fig. 1B). These venous channels were uniformly distributed along the entire length of the exiting nerve root, forming a direct communication between the epidural venous plexus and the venous plexus surrounding the VA.

Collateral branches arose from the medial and posterior sides of the VA. The medial branches were directed to the anterior longitudinal ligament and the VBs. These tiny vessels were observed in 21 (58%) of the 36 examined levels and were normally covered with the bellies of the longus colli and longus capitis muscles. Radiculart branches arose from the posterior surface of the VA between C-4 and C-6 in 14 (39%) of the 36 levels examined. These medially directed branches left the VA at the inferior margin of the corresponding nerve root, entered the neural foramen with an ascend ing course, and followed the nerve root with variable branching patterns. In each specimen, these radicular branches supplied the corresponding nerve root. In six of 14 cases, the radicular trunk sent a collateral branch into the virtual space between the posterior longitudinal ligament and the VB. In nine of 14 cases, the radicular trunk concluded at the spinal cord as a contributor of the anterior or the posterolateral medullary axes (Fig. 1C). In each case, the radicular branches pierced the dural sheath of the corresponding nerve root within the neural foramen at a distance ranging from 2 to 4 mm from the VA trunk.

At the C-3 level, the V$_2$ segment of the VA consistently gave rise to a collateral branch in the retroodontoid arterial arch and a lateral branch that crossed the extraforaminal portion of the cervical nerve roots and united with the ascending cervical artery (Fig. 1A). No medullary branches were observed at this level.

Discussion

Vertebral artery injury is a potential complication of a number of commonly performed surgical procedures involving the cervical spine. The likelihood of injury is particularly high in the late phase of these procedures, during the attempt to accomplish thorough decompression of a nerve root or removal of the most lateral portion of a normal or diseased VB. Smith, et al., in a review of 5 years
A thorough lateral
cutaneous and medially located at those levels.

Moreover, depending on the specific case, the landmarks
within the surgeon’s view during a lateral decompression.
Moreover, depending on the specific case, the landmarks
themselves might have been removed or displaced in an
early stage of the surgical procedure. In our opinion, one
of the best guides for understanding the position of the VA
during decompression of a cervical nerve root is the nerve
root itself. Therefore, we measured the length of the seg-
ment of each nerve root between the dural sac and the VA.

The cervical nerve roots intersect the VA at a variable
distance from their origin. Overall, dissection of a nerve
root in a proximal to distal direction can proceed with rel-
ative safety for at least 4 mm. In all specimens examined,
at least one radicular arterial pedicle was present between
C-4 and C-6. These trunks give rise to purely radicular,
ligamentous, and medullary branches in an unpredictable
pattern. This information is useful in minimizing the risk
of vascular complications during cervical spine surgery.

Conclusions

The cervical nerve roots intersect the VA at a variable
distance from their origin. Overall, dissection of a nerve
root in a proximal to distal direction can proceed with rel-
ative safety for at least 4 mm. In all specimens examined,
at least one radicular arterial pedicle was present between
C-4 and C-6. These trunks give rise to purely radicular,
ligamentous, and medullary branches in an unpredictable
pattern. This information is useful in minimizing the risk
of vascular complications during cervical spine surgery.

References

1. Ebraheim NA, Lu J, Haman SP, Yeasting RA: Anatomic basis
of the anterior surgery on the cervical spine: relationships be-
tween uncus-artery-root complex and vertebral artery injury.
2. George B, Laurian C: Surgical approach to the whole length of
the vertebral artery with special reference to the third portion.
3. George B, Lot G: Oblique transcerebral drilling to treat anteri-
or compression of the spinal cord at the cervical level. Minim
4. Golfinos JG, Dickman CA, Zahran JS, Monson RK, Spetz-
er RF: Repair of vertebral artery injury during anterior cervical
5. Kawashima M, Tanriover N, Rhoton AI, Matsushima T: The
transverse process, intertransverse space, and vertebral artery in
anterior approaches to the lower cervical spine. J Neurosurg
cord arteries and veins, in Surgical Neuroangiography, ed 2.
considerations of the vertebral artery: implications for anterior
decompression of the cervical spine. J Spinal Disord
8. Ozgen S, Pait TG, Caglar YS: The V2 segment of the vertebral
9. Pait TG, Killefer JA, Arnaoutikos KI: Surgical anatomy of the
anterior cervical spine: the disc space, vertebral artery, and as-
10. Sen C, Eisenberg M, Casden AM, Sundaresan N, Catalano PJ:
Management of the vertebral artery in excision of extradural tu-
11. Smith MD, Emery SE, Dudley A, Murray KJ, Leventhal M:
Vertebral artery injury during anterior decompression of the
cervical spine. A retrospective review of ten patients. J Bone
12. Ture U, Ozek M, Pamir MN: Lateral approach for resection of
the C3 corpus: technical case report. Neurosurgery 52:
977–980, 2003

Manuscript received January 22, 2006.
Accepted in final form July 27, 2006.
Address reprint requests to: Giuseppe Lanzino, M.D., Depart-
ment of Neurosurgery, Illinois Neurological Institute, University of
Illinois College of Medicine at Peoria, 530 Northeast Glen Oak,
Peoria, Illinois 61637. email: lanzino@uic.edu.

S. Paolini and G. Lanzino

TABLE 1
Length of cervical nerve roots measured from the dural sac
to the medial border of the second segment of the VA
in 12 cadaveric specimens*

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5</td>
<td>4.9</td>
<td>6.4</td>
<td>6.5</td>
</tr>
<tr>
<td>2</td>
<td>5.1</td>
<td>6.9</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>4.9</td>
<td>6.3</td>
<td>6.3</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>5.2</td>
<td>4.9</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>5</td>
<td>4.6</td>
<td>5.8</td>
<td>6.1</td>
<td>7.7</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
<td>6.4</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>7</td>
<td>5.2</td>
<td>5.6</td>
<td>6.3</td>
<td>6.4</td>
</tr>
<tr>
<td>8</td>
<td>5.3</td>
<td>6.2</td>
<td>6.9</td>
<td>8.1</td>
</tr>
<tr>
<td>9</td>
<td>5.0</td>
<td>6.7</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>4.9</td>
<td>6.2</td>
<td>6.5</td>
<td>7.1</td>
</tr>
<tr>
<td>11</td>
<td>5.4</td>
<td>6.6</td>
<td>6.9</td>
<td>8.0</td>
</tr>
<tr>
<td>12</td>
<td>5.4</td>
<td>7.2</td>
<td>7.7</td>
<td>7.9</td>
</tr>
</tbody>
</table>

* The mean length was 6.3 ± 1.06 mm (± standard deviation).